
Load Testing 101: Essential Tips for Testers and Developers | 1

Load Testing 101: Essential Tips
for Testers and Developers

https://smartbear.com?utm_medium=resource&utm_source=ebook&utm_campaign=ln_ebk_load101

Load Testing 101: Essential Tips for Testers and Developers | 2

 Preface

 Load Testing Basics

 Goals of Load Testing

 Preparing Your Load Tests

 Making It Real: Emulating Real Life Conditions
 In Your Load Tests

 The Dos and Don’ts of Load Testing

 About LoadNinja

3 |

4 |

6 |

8 |

13 |

16 |

18 |

Content

Load Testing 101: Essential Tips for Testers and Developers | 3

By the time any software development

project nears completion, it likely will have

gone through numerous tests, particularly

in an Agile environment where testing and

development happen concurrently. But no

matter how many tests you’ve run, once your

application is nearly complete, there’s really

only one way to know whether or not your

software can handle the actual demands

your army of end users will soon be placing

on it — load testing.

Load testing is the process of putting simulated

demand on software, an application, or website in

a way that demonstrates its behavior under various

conditions. Over the last decade, the importance

of load testing has skyrocketed. What was once a

simple pre-deployment exercise to ensure a web

application could handle the load of multiple users

is now an integral part of software development

and continuous performance improvement. As

websites and web applications become more inno-

vative and complex, load testing poses a significant

challenge for teams to 1. Execute properly and 2.

Cover all the bases. Though load testing as

a practice has been around for years, we still see

well known mobile and web applications getting

overwhelmed during peak traffic hours.

As a result, load testing needs to be done more

frequently, more effectively, and more efficiently.

It’s also created a need to simply train more people

in the basics of load testing. Given that our lives

increasingly rest on software functioning properly

— whether it’s in medical devices, transportation,

communications, defense, or entertainment — soft-

ware performance has never been more important.

That’s what this eBook is ultimately about — a “Load

Testing 101” manual to get the new & aspiring tes-

ters started with load testing.

We’ll cover:

 | Load testing basics

 | How to prepare for load testing

 | Emulating real life conditions in your load tests

 | Load testing dos and don’ts

Load Testing 101: Essential Tips for Testers and Developers | 4

Load Testing
Basics

Load testing is a type of performance testing.

Performance testing is a series of testing methods

employed to understand how a system performs

in terms of responsiveness and stability under a

specific set of strains. Oftentimes, teams begin per-

formance testing in conjunction with or after func-

tional testing within the test phase of the software

development lifecycle. Each type of performance

testing method helps answer a specific question

about your application’s behavior that helps carve a

path for issue identification & iterative performance

improvement.

For instance, load testing helps you answer, how

will my application behave in production with the

typical traffic that we see? Load testing is used to

verify your application’s behavior under normal and

peak load conditions. This allows you to verify that

your application can meet the desired performance

objectives; which are often specified in a service

level agreement (SLA). Load testing also enables

you to measure response times, throughput rates,

resource utilization levels, and to identify your

application’s breaking point, assuming that breaking

point occurs below the peak load condition. Load

testing helps you check your web server’s perfor-

mance under a massive load, determine its robust-

ness, and estimate its scalability.

Stress testing enables you to evaluate your ap-

plication’s behavior when it is pushed beyond the

normal or peak load conditions, and helps you un-

derstand ‘what is my application’s breaking point?’

The purpose of web server stress testing is to find

Load Testing Stress Testing Capacity Testing

Load Testing 101: Essential Tips for Testers and Developers | 5

the target application’s crash point. The crash point

is not always an error message or access violation.

It can be a perceptible slowdown in the request

processing. The goal of stress testing is to unearth

application bugs that surface only under high

load conditions. Stress testing helps you find your

application’s weak points, and how it behaves under

extreme load conditions.

Capacity testing is complementary to load testing

and determines your server’s ultimate failure point,

whereas load testing monitors results at various

levels of load and traffic patterns. For example, let’s

say you’re developing a new online voting platform,

and you’d like it to be able to handle potentially up

to 10,000 user submissions per minute during peak

load times. While developing the software, you may

have performed unit tests as the code was being

written, plus periodic regression tests to make sure

you didn’t break existing functionality with each new

modification as development progressed, but at

what point did you begin testing for multiple users?

At what point did you begin testing the program to

accept hundreds or even thousands of overlapping

field entries, form submissions, and other commands?

This is when load testing comes into the picture.

Load testing usually involves the following steps:

Identify key
scenarios

Identify
workload

Identify
metrics

Create test
cases

Simulate
load

Analyze
results

Iterate

Load Testing 101: Essential Tips for Testers and Developers | 6

Goals of Load
Testing

The main goals of load testing are to:

1. Identify bottlenecks and their causes

2. Optimize the application configuration (both the hardware and software)

for maximum performance.

3. Verify the reliability of your application under stress

Load/stress testing helps you identify the following characteristics:

 | Response time

 | Throughput

 | Maximum concurrent users supported

 | Resource utilization in terms of the amount of CPU, RAM, network I/O, and disk I/O
resources your application consumes during the test

 | Behavior under various workload patterns including normal load conditions, excessive
load conditions, and conditions in between

 | Application breaking point

 | Symptoms and causes of application failure under stress conditions

 | Weak points in your application

 | What is required to support a projected increase in load

Load Testing 101: Essential Tips for Testers and Developers | 7

This eBook keeps the abovementioned steps in mind and uses our load testing tool LoadNinja

to help you understand basics of load testing.

We’ll approach load testing with a four-step process:

 | Prepare: to prepare your web application for load testing

 | Record: How to record load testing scenarios

 | Test: Creating tests that match real-life circumstances

 | Analyze: Understanding and using load testing data

Load Testing 101: Essential Tips for Testers and Developers | 8

Preparing Your
Load Tests

With shift-left and DevOps motion, software

teams are pressured to test more and test often

Testing should be performed at each step in the

development cycle and should continue after the

application is live. While it can be frustrating that a

tester’s job is never done, it’s important to take into

consideration that with each testing and remedia-

tion cycle, the application improves.

Applications go down under load for two reasons:

either developers didn’t load test or, worse, they

took the time to load test but didn’t prepare prop-

erly. Without adequate prep work, a load test can’t

find all the issues that it should.

So, how do you best prepare for a load test? Here

are our 10 steps to help you prepare:

1.
What do you really need to know?

Determine what you want to learn about your appli-

cation or system. Each type of test is run differently,

and looks at your application in a different light. So,

you’ll need to run different types of tests based on

what you hope to find out.

For example:

 | If you hope to discover how your application

performs with little or no load in order to get a

baseline, you will run a single user test.

 | If you hope to determine how your system will

perform under normal expected load, you will

run a load test.

 | If you hope to determine the breaking point,

the point where your application either stops

responding or responds so slowly that it is unus-

able, you need to run a stress test.

 | If you want to know if your application has memory

leaks, you will want to run endurance or soak test.

2.
Decide on a number of users

If you are going to load test, how many virtual users

do you want to simulate? In order to answer this, you

will want to approximate how many concurrent users

may visit your site, depending on the time of day.

Don’t guess. Instead, leverage some of the data you

already have. Talk to your marketing team and take

Load Testing 101: Essential Tips for Testers and Developers | 9

real traffic patterns from tools like Google Analytics,

or engage your Operations team and use data from

their Real User Monitoring (RUM) tools, which can

provide insight into realistic scenarios to test. If

you want to know some concrete statistics from a

historical perspective, go directly to your analytics

reports. You may even want to ask your engineers

how many concurrent users they designed the ap-

plication for, and your product owner for projected

numbers, based on promotional activities. Plan to

test that number and some percentage above it.

There are numerous ways you can find the number

of virtual users needed to run a load test. We rec-

ommend the following formula to find the number

of virtual users needed to run a load test.

Concurrent users =
(peak hourly visits * visit duration in seconds)

3600

You can find peak hourly visits and visit duration

from an analytics tool, such as Google Analytics.

Note that this formula should be used to esti-

mate the number of concurrent users required to

achieve a specific page-view rate at fully-ramped

load. It should not be used to estimate the number

of pages that will load within a specific time interval.

3.
Study your analytics

Don’t pretend to know how your customers use

your application. The only way to truly understand

your users is to study history (i..e. analytics). By

studying your analytics, you will be able to create

tests that are representative of your actual users,

as opposed to tests that you think are represen-

tative of your users. In this regard, analytics are a

tester’s best friend.

4.
Performance is a team goal

gather your team You need to involve a number of

people in the testing effort, including: developer,

network engineer, DBA, and business owner. All of

these individuals have a vested interest in making

the application successful, and each will approach

the problem from a different angle.

The correct solution will not fall directly into one of

these buckets, but will be a combination of two or

more. Make sure each is aligned with the perfor-

mance expectations and is available during testing to:

 | Monitor their area of expertise

 | Provide balanced feedback

 | Gain a sense of ownership for the health and

performance of the application

Load Testing 101: Essential Tips for Testers and Developers | 10

5.
Prepare your browsers

Use testing software that brings you as close to

your actual users’ experience as possible. You

should be able to record your scenario in the

browsers of your choice, but you also need to

anticipate the browsers your users will most likely

use. Consider the countries and regions where

you anticipate high usage, and research the most

used browsers.

You’ll need to have these installed on your machine

to begin testing. Then you need to make sure your

load testing software emulates as closely as possi-

ble actual user behavior.

This includes:

 | Parallel thread processing

 | Think time

 | Multiple concurrent scenarios

 | Complex scenarios

 | Parameterization

 | Generating load from multiple agents
(network/cloud)

In LoadNinja, you can leverage a real browser to

run a test, so you know you are getting the most

accurate test results as possible.

6.
Be prepared to test your
production application

While it is valuable to test your application when

it is in a staging environment, this can leave some

holes in your testing. There are a few reasons for

this, including:

 | Staging environments are not often exact
duplicates of production.

 | Staging environments are often accessible
from only inside the firewall.

 | There is something to be said for testing
the same system that you are gathering

information about.

7.
Set aside time to analyze results

You should be prepared to spend some time ana-

lyzing test results as a group (remember all of

those people that were present during testing?).

Results need to be looked at to ensure bottlenecks/

errors/weaknesses are understood and remedia-

tion is effective. Reach out to everyone involved and

schedule adequate time.

 8.

Set aside time to make changes

Different remediation will have differing costs in

terms of time. Remediation such as implementing

a caching strategy, refactoring code, database

optimization and hardware upgrades have a wide

range of costs to implement in terms of both time

and money. As an example, adding more hardware

will require time to order the hardware, receive the

shipment, test the new hardware, install software

and data, test, install into the network, and test

some more. This can be weeks or months of work.

This is less of a problem if you are in the cloud. In

which case, it takes less than a day. Many compa-

nies are opting to move to cloud infrastructures,

offering an unlimited number of environments

without the need for additional hardware costs and

time constraints.

Load Testing 101: Essential Tips for Testers and Developers | 11

However, it’s always advisable to load test appli-

cations that are accessible within your firewall as

well. Some load testing tools, like LoadNinja, allow

you to do both.

9.

Plan an Agile testing methodology

Once you remediate, it is time to test again. The

saying, “testing is a process, not a destination” is

very true. Each time a bottleneck is uncovered and

corrected, another one rises to take its place. It is

important to plan an Agile testing methodology,

whereby performance testing is baked into each

step of the development cycle. Additional testing

should be performed:

 | When code is modified or updated

 | When environment/infrastructure changes are

introduced

 | When changes are made to the application

server or DB server

 | When traffic spikes are anticipated

Now that you’ve taken the time to really prepare,

load testing your application will help you continually

improve your product and your business.

How role playing games can save your app:

It’s easy to get swept up in role-playing video games.

Who can resist the temptation to be anyone you

want in a fictional world filled with unending ex-

citement? Believe it or not, role playing games also

offer valuable lessons for testing your application.

In the next section, we look at how you can create

scenarios in order to perform load tests, and why

this needs to be a major aspect of both deploying

and improving web applications.

10.

How to record scenarios

The first thing to do is to determine the roles you

will define for use in your test. A role is equivalent to

a certain type of user that will visit the tested web-

site, and the steps they will take while visiting.

Load Testing 101: Essential Tips for Testers and Developers | 12

If the tested site is a retail site, for example, you

might have the following roles:

 | Browse and leave

 | Browse, add something to the cart, and check out

 | If your tested site is a restaurant site, your roles
might look something like this:

• Browse menu and find directions

• Look at hours of operation and make
a reservation

It’s best to choose at least three of the most com-

mon pathways through your site, and add a few

uncommon routes as well. Next, you need to break

these roles down by percentage of traffic. A typical

retail site may have 95% of users browsing and leaving,

and 5% (or less!) actually making a purchase (Fig. 1).

The combination of these two roles, or scenarios,

will represent actual site traffic.

After each scenario is recorded, you need to verify

it individually. This involves running a single virtual

user for a single pass through the scenario. This

step should never be forgotten.

Now you’re ready to start testing. By recording sce-

narios that imitate actual user traffic, you’re setting

the stage to greatly improve customer experience

and, if you’re into e-commerce, get that percentage

of purchases above 5%.

Percentage

95%

5%

Role

Browe and Leave

Browse, add something to the cart and checkout

Fig. 1

Load Testing 101: Essential Tips for Testers and Developers | 13

Whether it’s an elementary school math quiz, a

college history exam, or a software development

team’s load test, we always want our tests to

emulate real-life conditions. Otherwise, what’s

the point of testing?

In this chapter, we’ll discuss ways you can ensure

your load tests match reality. Some of the best

perks about our load testing tool, LoadNinja, are the

settings that aid the process of generating a realistic

load test. Of course, like all load testing tools, you

can specify the number of virtual users to be sim-

ulated, but you can also set certain conditions that

easily create more powerful and reliable load tests.

Plus, one of the biggest advantages is running your

load tests in real browsers and getting test results

with browser-based data. No matter which load

testing tool you choose, make sure it allows you to

set some version of these basic conditions.

Ramping up virtual users

When running performance tests, it’s not desirable

(and realistic) to start all virtual users at the same

time. Starting all virtual users at the same time can

create artificial bottlenecks in certain parts of the

application — such as the login process. In Load

Ninja, you can configure the ramp up time and

delay between user sessions, so you can increase

the user number over time. For example: you start

with a single virtual user and add one virtual user

every two seconds until you reach a certain number

of simultaneous users, and then hold that number

for the duration of the test.

Setting load duration

In order for you to run a test with large numbers of

virtual users, you will need to set duration for your

test. By setting duration, each virtual user will exe-

cute its scenario and when it reaches the end it will

start over – thereby maintaining the level of load. For

example, if your scenario takes two minutes to be ex-

ecuted but you run a test for 10 minutes, the scenar-

io might be executed five times by each virtual user.

This function is part of the test set-up in LoadNinja,

where you can select either a duration based test

or a iterations based test. LoadNinja will simulate

each virtual user for the number of times set by total

iterations or for the duration that is selected.

Parameterizing tests

While recording a scenario, you may need to specify

some parameters that will be used for further test

Making It Real:
Emulating Real Life
Conditions In Your
Load Tests

Load Testing 101: Essential Tips for Testers and Developers | 14

runs. For example, you can enter some search

terms, user names and so on in the application’s

fields. However, it is not a good practice to play

back a test with the same recorded data for each

user as it does not simulate the real-life conditions.

To solve the problem, LoadNinja allows you to pa-

rameterize your load test using real data. Data-driven

tests empower your team to create tests that reflect

realistic scenarios, and by leveraging this feature, the

requests can use the provided data during test runs.

Replicating Browsers, network
connection bandwidth and
browsing speed

Real users visit a website using different browsers,

the bandwidth of user’s Internet connections can

vary significantly, and they spend different amounts

of time on each page. It’s important to keep all of

these in mind when you’re configuring your tests,

so you know that the tests you run will be helpful

in gauging how your application will perform in

production.

In LoadNinja, you record, replay, and run every test

in a real browser. This way you know you’re accu

rately measuring your application performance.

With this advantage, your team can spend more time

testing & analyzing and less time reconfiguring the

original test scripts to ensure they playback properly.

You can also specify think time for each tested

page (we call this think time, as it simulates the time

when a user is viewing the page and thinking). You

can easily randomize the think time for simulated

scenarios to better emulate real user activity.

Analyzing data in Load testing:
What you need to know

More often than not, developers and QA managers

come away from a trial of load testing software with

little more than the number of users that will crash

their system. Unless they have a professional load

tester on staff, most development teams don’t have

the resources, or knowledge to garner all they could

from their load tests.

That data is wasted because the person running the

tests is unable to apply it to an application’s perfor-

mance. Luckily, improvements in graphics and UIs

have made interpreting data much easier — if you

know what to look for.

Load Testing 101: Essential Tips for Testers and Developers | 15

Page load time

You need to know the average page load time for

each page in your scenario. You might have a strict

Service Level Agreement (SLA) that mandates how

quickly pages must load, or may just want to know

what this number is. It is also important to know if

one page takes longer than others to load— this

indicates a bottleneck in your application.

Response load time

Just knowing page load time is not enough. If a page

is slow, you need to know why. Being able to look at

average response times for each response gives you

a detailed look into where the time is being spent.

Errors and warnings

You need to know which errors and warnings were

generated and at what level of load. This is especial-

ly important information to see in chart format. It

is important to see which errors and warnings are

generated and be able to see how that changes as

load increases. A common error at high levels of

load is “Server Error 500s.”

Navigation Timings

Understanding what your end user experience and

why is key in identifying performance issues. Some

of these metrics include redirect time, connect time,

first byte time, response time, DOM load time, and

event time. It’s important to understand what your

performance benchmarks (or competitive bench-

marks are) for these metrics to make sure that the

experience you’re delivering through the browser

meets your standards.

Request and response
throughput

It’s important to see the amount of data going to

and coming from the tested system. This is espe-

cially important in a case where load is increasing,

but bandwidth reaches and maintains a plateau. In

this case, it becomes apparent that bandwidth is

being throttled at some point in the process, possi-

bly at the firewall.

Hosts

Because so many of today’s websites call out to a

plethora of additional hosts for things like content

delivery networks, ad servers, analytics servers,

social media and syndicated content, it is important

for these sites to be enumerated in your reports.

It’s equally important to be able to view all of the

calls to a particular host. If a host is called from your

pages, the response time for those requests will

add to the time it takes your pages to render.

Here’s a list of the most important results in load testing and how you
should be working with them.

Load Testing 101: Essential Tips for Testers and Developers | 16

As you get ready to implement load testing to

your performance strategy, there are a few dos

and don’ts you’ll want to keep in mind.

Dos:

Record tests with an end-user in mind. Map out

user journeys that are realistic, comprehensive,

and critical to business functions. Understanding

that your application can handle what a user

would realistically do is key in ensuring it will stand

up in production.

Generate load from different servers than those

that host your application. Serve them from different

environments so you can get the best view of

performance without accidentally altering results.

Start recording a new scenario from the web

browser’s start. If you start recording a scenario

after you connect to the tested web server and

open a few web pages, the playback of the scenario

will fail. This will happen because the recorded

traffic will not reproduce the authentication

procedure, and the tested web server will ignore

the simulated requests. (Note: In LoadNinja, this is

not required, as we test in real browsers. However

if you’re relying on an emulator this may be

important).

Parameterize scenarios to simulate more realistic

load on the server. Parameterizing scenarios

involves replacing recorded parameters in the

requests with variable values. This way you can

make virtual users send user-specific data to the

server. These data-driven tests will give you a more

realistic view of how your application will perform

when a unique group of users interact with it.

Verify user scenarios. Before creating tests on

the basis of a recorded scenario, make sure that

the scenario is executed successfully for one

virtual user. This can help you identify bottlenecks

of the scenario and eliminate problems which are

not related to the number of virtual users and

additional testing conditions.

Arrange user scenarios in your tests so that

critical functionality is tested first.

The Dos & Don’ts
of Load Testing

Load Testing 101: Essential Tips for Testers and Developers | 17

Don’ts:

Do not run tests in real environments. A real

environment can have other network traffic, and

this may affect test results. To avoid excess data

transfer, use a test environment that behaves in the

same way as the real environment except that there

is no other traffic usage. (Refer details on ‘prepare’

stage to perform load test in production).

Do not try to crash the tested server. The goal of

web server performance testing is not to break the

server, but to identify web application performance

bottlenecks under various loads.

Do not overly stress the client test systems.

Do not use zero think time. Make sure that think

time in your test is based on real-life conditions.

Using zero think time does not provide realistic user

simulation and puts an abnormal load on the tested

server. However, omitting think time can help you

determine bottleneck issues.

Load Testing 101: Essential Tips for Testers and Developers | 18

About LoadNinja
LoadNinja by SmartBear allows you to quickly create

scriptless sophisticated load tests, reduce testing time by

50%, replace load emulators with real browsers, and get

actionable, brower-based metrics, all at ninja speed. You

can easily capture client-side interactions, debug in real

time, and identify performance problems immediately.

LoadNinja empowers teams to increase their test coverage

without sacrificing quality by removing the tedious efforts

of dynamic correlation, script translation, and script

scrubbing. With LoadNinja, engineers, testers and product

teams can focus more on building apps that scale and less

on building load testing scripts.

LoadNinja

Start Your Free Trial

https://loadninja.com?utm_medium=resource&utm_source=ebook&utm_campaign=ln_ebk_load101

Load Testing 101: Essential Tips for Testers and Developers | 19

https://smartbear.com?utm_medium=resource&utm_source=ebook&utm_campaign=ln_ebk_load101

